Skip to content

📋 Tree Demonstration

Here are some codes to get started.

Construct Tree

Nodes can have attributes if they are initialized from Node, dictionary, pandas DataFrame, or polars DataFrame.

1. From Node

Nodes can be linked to each other in the following ways:

  • Using parent and children setter methods
  • Directly passing parent or children argument
  • Using bitshift operator with the convention parent >> child or child << parent
  • Using .append(child) or .extend([child1, child2]) methods
from bigtree import Node, tree_to_dot

root = Node("a")
b = Node("b")
c = Node("c")
d = Node("d")

root.children = [b, c]
d.parent = b

root.show()
# a
# ├── b
# │   └── d
# └── c

root.hshow()
#      ┌─ b ─── d
# ─ a ─┤
#      └─ c

graph = tree_to_dot(root, node_colour="gold")
graph.write_png("assets/demo/tree.png")
from bigtree import Node

b = Node("b")
c = Node("c")
d = Node("d", parent=b)
root = Node("a", children=[b, c])
from bigtree import Node

root = Node("a")
b = Node("b")
c = Node("c")
d = Node("d")

root >> b
root >> c
d << b
from bigtree import Node

root = Node("a")
b = Node("b")
c = Node("c")
d = Node("d")

root.extend([b, c])
b.append(d)

Sample Tree Output

2. From str

Construct nodes only. Newick string notation supports parsing attributes.

from bigtree import str_to_tree

tree_str = """
a
├── b
│   ├── d
│   └── e
│       ├── g
│       └── h
└── c
    └── f
"""
root = str_to_tree(tree_str)

root.show()
# a
# ├── b
# │   ├── d
# │   └── e
# │       ├── g
# │       └── h
# └── c
#     └── f
from bigtree import newick_to_tree

newick_str = "((d,(g,h)e)b,(f)c)a"
root = newick_to_tree(newick_str)

root.show()
# a
# ├── b
# │   ├── d
# │   └── e
# │       ├── g
# │       └── h
# └── c
#     └── f

3. From list

Construct nodes only. List can contain either full paths or tuples of parent-child names.

from bigtree import list_to_tree

root = list_to_tree(["a/b/d", "a/c"])

root.show()
# a
# ├── b
# │   └── d
# └── c
from bigtree import list_to_tree_by_relation

root = list_to_tree_by_relation([("a", "b"), ("a", "c"), ("b", "d")])

root.show()
# a
# ├── b
# │   └── d
# └── c

4. From nested dictionary

Construct nodes with attributes. Dictionary can be in a flat structure where key is path and value is dictionary of node attribute names and values, or in a recursive structure where key is node attribute names and value is node attribute values, and list of children (recursive).

from bigtree import dict_to_tree

path_dict = {
   "a": {"age": 90},
   "a/b": {"age": 65},
   "a/c": {"age": 60},
   "a/b/d": {"age": 40},
}
root = dict_to_tree(path_dict)

root.show(attr_list=["age"])
# a [age=90]
# ├── b [age=65]
# │   └── d [age=40]
# └── c [age=60]
from bigtree import nested_dict_to_tree

path_dict = {
   "name": "a",
   "age": 90,
   "children": [
      {
         "name": "b",
         "age": 65,
         "children": [
            {"name": "d", "age": 40},
         ],
      },
      {"name": "c", "age": 60},
   ],
}
root = nested_dict_to_tree(path_dict)

root.show(attr_list=["age"])
# a [age=90]
# ├── b [age=65]
# │   └── d [age=40]
# └── c [age=60]

5. From pandas/polars DataFrame

Construct nodes with attributes. DataFrame can contain either path column or parent-child columns. Other columns can be used to specify attributes.

import pandas as pd

from bigtree import dataframe_to_tree

data = pd.DataFrame(
   [
      ["a", 90],
      ["a/b", 65],
      ["a/c", 60],
      ["a/b/d", 40],
   ],
   columns=["path", "age"],
)
root = dataframe_to_tree(data)

root.show(attr_list=["age"])
# a [age=90]
# ├── b [age=65]
# │   └── d [age=40]
# └── c [age=60]
import pandas as pd

from bigtree import dataframe_to_tree_by_relation

data = pd.DataFrame(
   [
      ["a", None, 90],
      ["b", "a", 65],
      ["c", "a", 60],
      ["d", "b", 40],
   ],
   columns=["child", "parent", "age"],
)
root = dataframe_to_tree_by_relation(data)

root.show(attr_list=["age"])
# a [age=90]
# ├── b [age=65]
# │   └── d [age=40]
# └── c [age=60]
import polars as pl

from bigtree import polars_to_tree

data = pl.DataFrame(
   [
      ["a", 90],
      ["a/b", 65],
      ["a/c", 60],
      ["a/b/d", 40],
   ],
   schema=["path", "age"],
)
root = polars_to_tree(data)

root.show(attr_list=["age"])
# a [age=90]
# ├── b [age=65]
# │   └── d [age=40]
# └── c [age=60]
import polars as pl

from bigtree import polars_to_tree_by_relation

data = pl.DataFrame(
   [
      ["a", None, 90],
      ["b", "a", 65],
      ["c", "a", 60],
      ["d", "b", 40],
   ],
   schema=["child", "parent", "age"],
)
root = polars_to_tree_by_relation(data)

root.show(attr_list=["age"])
# a [age=90]
# ├── b [age=65]
# │   └── d [age=40]
# └── c [age=60]

Note

If tree is already created, nodes can still be added using path string, dictionary, and pandas/polars DataFrame!
Attributes can be added to existing nodes using a dictionary or pandas/polars DataFrame.

View Tree

1. Print Tree

After tree is constructed, it can be viewed by printing to console using show or hshow method directly, for vertical and horizontal orientation respectively. Alternatively, the print_tree or hprint_tree method can be used.

from bigtree import Node, print_tree, hprint_tree

root = Node("a", alias="alias-a", age=90, gender="F")
b = Node("b", age=65, gender="M", parent=root)
c = Node("c", alias="alias-c", age=60, gender="M", parent=root)
d = Node("d", age=40, gender="F", parent=b)
e = Node("e", age=35, gender="M", parent=b)
print_tree(root) # (1)!
# a
# ├── b
# │   ├── d
# │   └── e
# └── c

hprint_tree(root) # (2)!
#            ┌─ d
#      ┌─ b ─┤
# ─ a ─┤     └─ e
#      └─ c
  1. Alternatively, root.show() can be used
  2. Alternatively, root.hshow() can be used

Other customizations for printing are also available, such as:

  • Printing alias instead of node name, if present
  • Printing subtree
  • Printing tree with attributes
  • Different built-in or custom style
root.show(alias="alias")
# alias-a
# ├── b
# │   ├── d
# │   └── e
# └── alias-c
root.show(node_name_or_path="b")
# b
# ├── d
# └── e

root.show(max_depth=2)
# a
# ├── b
# └── c
root.show(attr_list=["age"])
# a [age=90]
# ├── b [age=65]
# │   ├── d [age=40]
# │   └── e [age=35]
# └── c [age=60]

root.show(attr_list=["age"], attr_bracket=["*(", ")"])
# a *(age=90)
# ├── b *(age=65)
# │   ├── d *(age=40)
# │   └── e *(age=35)
# └── c *(age=60)

root.show(all_attrs=True)
# a [age=90, gender=F]
# ├── b [age=65, gender=M]
# │   ├── d [age=40, gender=F]
# │   └── e [age=35, gender=M]
# └── c [age=60, gender=M]
root.show(style="ansi")
# a
# |-- b
# |   |-- d
# |   `-- e
# `-- c
root.show(style="ascii")
# a
# |-- b
# |   |-- d
# |   +-- e
# +-- c
root.show(style="const")
# a
# ├── b
# │   ├── d
# │   └── e
# └── c
root.show(style="const_bold")
# a
# ┣━━ b
# ┃   ┣━━ d
# ┃   ┗━━ e
# ┗━━ c
root.show(style="rounded")
# a
# ├── b
# │   ├── d
# │   ╰── e
# ╰── c
root.show(style="double")
# a
# ╠══ b
# ║   ╠══ d
# ║   ╚══ e
# ╚══ c
root.show(style=("│  ", "├→ ", "╰→ "))
# a
# ├→ b
# │  ├→ d
# │  ╰→ e
# ╰→ c

2. Plot Tree

Tree can also be plotted using plot method directly with the help of matplotlib library. Alternatively, the plot_tree method can be used, but remember to run the reingold_tilford algorithm first to retrieve the x and y coordinates.

Arguments and keyword arguments can be passed in as long as they are compatible with the plt.plot() function. A plt.Figure object is returned if you want to do further customizations such as add title or save the figure to image.

from bigtree import Node, reingold_tilford, plot_tree

root = Node("a", age=90, gender="F")
b = Node("b", age=65, gender="M", parent=root)
c = Node("c", age=60, gender="M", parent=root)
d = Node("d", age=40, gender="F", parent=b)
e = Node("e", age=35, gender="M", parent=b)

reingold_tilford(root)
fig = plot_tree(root, "-ok") # (1)!
fig.axes[0].set_title("Tree Plot Demonstration")

fig.show()  # Show figure
fig.savefig("assets/demo/tree_plot.png")  # Save figure
  1. Alternatively, root.plot("-ok") can be used

Tree Plot Image Output

Tree Attributes and Operations

Note that using BaseNode or Node as superclass inherits the default class attributes (properties) and operations (methods).

from bigtree import str_to_tree

# Initialize tree
tree_str = """
a
├── b
│   ├── d
│   ├── e
│   └── f
│       ├── h
│       └── i
└── c
    └── g
"""
root = str_to_tree(tree_str)

# Accessing children
node_b = root["b"]
node_e = root["b"]["e"]

Below are the tables of attributes available to BaseNode and Node classes.

Attributes wrt self Code Returns
Check if root root.is_root True
Check if leaf node root.is_leaf False
Check diameter of tree node_b.diameter 3
Check depth of node node_b.depth 2
Check depth of tree node_b.max_depth 4
Get root of tree node_b.root Node(/a, )
Get node path node_b.node_path (Node(/a, ), Node(/a/b, ))
Get node name (only for Node) node_b.node_name 'b'
Get node path name (only for Node) node_b.path_name '/a/b'
Attributes wrt structure Code Returns
Get child/children root.children (Node(/a/b, ), Node(/a/c, ))
Get parent node_e.parent Node(/a/b, )
Get siblings node_e.siblings (Node(/a/b/d, ), Node(/a/b/f, ))
Get left sibling node_e.left_sibling Node(/a/b/d, )
Get right sibling node_e.right_sibling Node(/a/b/f, )
Get ancestors (lazy evaluation) list(node_e.ancestors) [Node(/a/b, ), Node(/a, )]
Get descendants (lazy evaluation) list(node_b.descendants) [Node(/a/b/d, ), Node(/a/b/e, ), Node(/a/b/f, ), Node(/a/b/f/h, ), Node(/a/b/f/i, )]
Get leaves (lazy evaluation) list(node_b.leaves) [Node(/a/b/d, ), Node(/a/b/e, ), Node(/a/b/f/h, ), Node(/a/b/f/i, )]

Below is the table of operations available to BaseNode and Node classes.

Operations Code Returns
Visualize tree (only for Node) root.show() None
Visualize tree (horizontally) (only for Node) root.hshow() None
Get node information root.describe(exclude_prefix="_") [('name', 'a')]
Find path from one node to another root.go_to(node_e) [Node(/a, ), Node(/a/b, ), Node(/a/b/e, )]
Add child to node root.append(Node("j")) None
Add multiple children to node root.extend([Node("k"), Node("l")]) None
Set attribute(s) root.set_attrs({"description": "root-tag"}) None
Get attribute root.get_attr("description") 'root-tag'
Copy tree root.copy() None
Sort children root.sort(key=lambda node: node.node_name, reverse=True) None
Plot tree root.plot("-ok") plt.Figure()

Traverse Tree

Tree can be traversed using the following traversal methods.

from bigtree import (
    levelorder_iter,
    levelordergroup_iter,
    postorder_iter,
    preorder_iter,
    str_to_tree,
    zigzag_iter,
    zigzaggroup_iter,
)

root = str_to_tree("""
a
├── b
│   ├── d
│   └── e
└── c
""")

[node.node_name for node in preorder_iter(root)]
# ['a', 'b', 'd', 'e', 'c']

[node.node_name for node in postorder_iter(root)]
# ['d', 'e', 'b', 'c', 'a']

[node.node_name for node in levelorder_iter(root)]
# ['a', 'b', 'c', 'd', 'e']

[[node.node_name for node in node_group] for node_group in levelordergroup_iter(root)]
# [['a'], ['b', 'c'], ['d', 'e']]

[node.node_name for node in zigzag_iter(root)]
# ['a', 'c', 'b', 'd', 'e']

[[node.node_name for node in node_group] for node_group in zigzaggroup_iter(root)]
# [['a'], ['c', 'b'], ['d', 'e']]

Modify Tree

Nodes can be shifted (with or without replacement) or copied (without replacement) from one path to another, this changes the tree in-place. Nodes can also be copied (with or without replacement) between two different trees.

There are various other configurations for performing copying/shifting, refer to code documentation for more examples.

from bigtree import list_to_tree, shift_nodes, shift_and_replace_nodes

root = list_to_tree(
    ["Downloads/Pictures", "Downloads/photo1.jpg", "Downloads/file1.doc"]
)
root.show()
# Downloads
# ├── Pictures
# ├── photo1.jpg
# └── file1.doc

shift_nodes(
   tree=root,
   from_paths=["photo1.jpg", "Downloads/file1.doc"],
   to_paths=["Downloads/Pictures/photo1.jpg", "Downloads/Files/file1.doc"],
)
root.show()
# Downloads
# ├── Pictures
# │   └── photo1.jpg (1)
# └── Files
#     └── file1.doc (2)

shift_and_replace_nodes(
   tree=root,
   from_paths=["Downloads/Files"],
   to_paths=["Downloads/Pictures/photo1.jpg"],
)
root.show()
# Downloads
# └── Pictures
#     └── Files (3)
#         └── file1.doc
  1. The first shift to destination Downloads/Pictures/photo1.jpg
  2. The second shift to destination Downloads/Files/file1.doc, this creates intermediate Node Files as well
  3. Shift and replace photo1.jpg with Files folder
from bigtree import list_to_tree, copy_nodes

root = list_to_tree(
    ["Downloads/Pictures", "Downloads/photo1.jpg", "Downloads/file1.doc"]
)
root.show()
# Downloads
# ├── Pictures
# ├── photo1.jpg
# └── file1.doc

copy_nodes(
   tree=root,
   from_paths=["photo1.jpg", "Downloads/file1.doc"],
   to_paths=["Downloads/Pictures/photo1.jpg", "Downloads/Files/file1.doc"],
)
root.show()
# Downloads
# ├── Pictures
# │   └── photo1.jpg (1)
# ├── photo1.jpg (2)
# ├── file1.doc (4)
# └── Files
#     └── file1.doc (3)
  1. The first copy to destination Downloads/Pictures/photo1.jpg
  2. Original photo1.jpg still remains
  3. The second copy to destination Downloads/Files/file1.doc, this creates intermediate Node Files as well
  4. Original file1.doc still remains
from bigtree import (
    Node,
    copy_nodes_from_tree_to_tree,
    copy_and_replace_nodes_from_tree_to_tree,
    list_to_tree,
    str_to_tree,
)

root = list_to_tree(
    ["Downloads/Pictures", "Downloads/photo1.jpg", "Downloads/file1.doc"]
)
root.show()
# Downloads
# ├── Pictures
# ├── photo1.jpg
# └── file1.doc

root_other = Node("Documents")
copy_nodes_from_tree_to_tree(
    from_tree=root,
    to_tree=root_other,
    from_paths=["Downloads/Pictures", "photo1.jpg", "file1.doc"],
    to_paths=[
        "Documents/Pictures",
        "Documents/Pictures/photo1.jpg",
        "Documents/Files/file1.doc",
    ],
)
root_other.show()
# Documents
# ├── Pictures (1)
# │   └── photo1.jpg (2)
# └── Files
#     └── file1.doc (3)

root_other = str_to_tree("""
Documents
├── Pictures
│   └── photo2.jpg
└── file2.doc
""")

copy_and_replace_nodes_from_tree_to_tree(
    from_tree=root,
    to_tree=root_other,
    from_paths=["Downloads/photo1.jpg", "Downloads/file1.doc"],
    to_paths=["Documents/Pictures/photo2.jpg", "Documents/file2.doc"],
)
root_other.show()
# Documents
# ├── Pictures
# │   └── photo1.jpg (4)
# └── file1.doc (5)
  1. The first copy to destination Documents/Pictures
  2. The second copy to destination Documents/Pictures/photo1.jpg
  3. The third copy to destination Documents/Files/file1.doc, this creates intermediate Node Files as well
  4. The first copy and replace of Documents/Pictures/photo2.jpg with photo1.jpg
  5. The second copy and replace of Documents/file2.doc with file1.doc

One or multiple nodes can be searched based on name, path, attribute value, or user-defined condition. It is also possible to search for one or more child node(s) based on attributes, this search will be faster as it does not require traversing the whole tree to find the node(s).

from bigtree import Node, find, find_name, find_path, find_relative_path, find_full_path, find_attr
root = Node("a", age=90)
b = Node("b", age=65, parent=root)
c = Node("c", age=60, parent=root)
d = Node("d", age=40, parent=c)
root.show(attr_list=["age"])
# a [age=90]
# ├── b [age=65]
# └── c [age=60]
#     └── d [age=40]

find(root, lambda node: node.age == 60)
# Node(/a/c, age=60)

find_name(root, "d")
# Node(/a/c/d, age=40)

find_relative_path(c, "../b")  # relative path
# Node(/a/b, age=65)

find_path(root, "/c/d")  # partial path
# Node(/a/c/d, age=40)

find_full_path(root, "a/c/d")  # full path
# Node(/a/c/d, age=40)

find_attr(root, "age", 40)
# Node(/a/c/d, age=40)
from bigtree import Node, findall, find_names, find_relative_paths, find_paths, find_attrs
root = Node("a", age=90)
b = Node("b", age=65, parent=root)
c = Node("c", age=60, parent=root)
d = Node("c", age=40, parent=c)
root.show(attr_list=["age"])
# a [age=90]
# ├── b [age=65]
# └── c [age=60]
#     └── c [age=40]

findall(root, lambda node: node.age >= 65)
# (Node(/a, age=90), Node(/a/b, age=65))

find_names(root, "c")
# (Node(/a/c, age=60), Node(/a/c/c, age=40))

find_relative_paths(c, "../*")  # relative path
# (Node(/a/b, age=65), Node(/a/c, age=60))

find_paths(root, "/c")  # partial path
# (Node(/a/c, age=60), Node(/a/c/c, age=40))

find_attrs(root, "age", 40)
# (Node(/a/c/c, age=40),)
from bigtree import Node, find_children, find_child, find_child_by_name
root = Node("a", age=90)
b = Node("b", age=65, parent=root)
c = Node("c", age=60, parent=root)
d = Node("c", age=40, parent=c)
root.show(attr_list=["age"])
# a [age=90]
# ├── b [age=65]
# └── c [age=60]
#     └── c [age=40]

find_children(root, lambda node: node.age >= 60)
# (Node(/a/b, age=65), Node(/a/c, age=60))

find_child(root, lambda node: node.node_name == "c")
# Node(/a/c, age=60)

find_child_by_name(root, "c")
# Node(/a/c, age=60)

find_child_by_name(c, "c")
# Node(/a/c/c, age=40)

Helper Utility

1. Clone tree

Trees can be cloned to another Node type. If the same type is desired, use tree.copy() instead.

from bigtree import BaseNode, Node, clone_tree

root = BaseNode(name="a")
b = BaseNode(name="b", parent=root)

clone_tree(root, Node)  # clone from `BaseNode` to `Node` type
# Node(/a, )

2. Get subtree

Subtree refers to a smaller tree with a different tree root.

from bigtree import str_to_tree, get_subtree

root = str_to_tree("""
a
├── b
│   ├── d
│   └── e
└── c
    └── f
""")

root_subtree = get_subtree(root, "b")
root_subtree.show()
# b
# ├── d
# └── e

3. Prune tree

Pruned tree refers to a smaller tree with the same tree root. Trees can be pruned by one or more of the following filters:

  • Path: keep all descendants by default, set exact=True to prune the path exactly
  • Depth: prune tree by depth
from bigtree import str_to_tree, prune_tree

root = str_to_tree("""
a
├── b
│   ├── d
│   └── e
└── c
    └── f
""")

root_pruned = prune_tree(root, "a/b")
root_pruned.show()
# a
# └── b
#     ├── d
#     └── e
from bigtree import str_to_tree, prune_tree

root = str_to_tree("""
a
├── b
│   ├── d
│   └── e
└── c
    └── f
""")

root_pruned = prune_tree(root, "a/b", exact=True)
root_pruned.show()
# a
# └── b
from bigtree import str_to_tree, prune_tree

root = str_to_tree("""
a
├── b
│   ├── d
│   └── e
└── c
    └── f
""")

root_pruned = prune_tree(root, "c", max_depth=2)
root_pruned.show()
# a
# └── c

4. Get tree differences

View the differences in structure and/or attributes between two trees. The changes reflected are relative to the first tree. By default, only the differences are shown. It is possible to view the full original tree with the differences.

To compare tree attributes:

  • (+): Node is added in second tree
  • (-): Node is removed in second tree
  • (~): Node has different attributes, only available when comparing attributes

For more details, (moved from), (moved to), (added), and (removed) can be indicated instead if (+) and (-) by passing detail=True.

For aggregating the differences at the parent-level instead of having (+) and (-) at every child node, pass in aggregate=True. This is useful if subtrees are shifted, and if you want to view the shifting at the parent-level.

Note

For more custom processing and handling of the tree differences, the interim dataframe of the tree differences can be retrieved with get_tree_diff_dataframe.

from bigtree import str_to_tree, get_tree_diff

root = str_to_tree("""
a
├── b
│   ├── d
│   └── e
└── c
    └── f
""")

root_other = str_to_tree("""
a
├── b
│   └── d
└── c
    └── g
""")

tree_diff = get_tree_diff(root, root_other)
tree_diff.show()
# a
# ├── b
# │   └── e (-)
# └── c
#     ├── f (-)
#     └── g (+)
from bigtree import str_to_tree, get_tree_diff

root = str_to_tree("""
a
├── b
│   ├── d
│   └── e
└── c
    └── f
""")

root_other = str_to_tree("""
a
├── b
│   └── d
└── c
    └── g
""")

tree_diff = get_tree_diff(root, root_other, only_diff=False)
tree_diff.show()
# a
# ├── b
# │   ├── d
# │   └── e (-)
# └── c
#     ├── f (-)
#     └── g (+)
from bigtree import str_to_tree, get_tree_diff

root = str_to_tree("""
a
├── b
│   ├── d
│   │   └── g
│   └── e
└── c
    └── f
""")

root_other = str_to_tree("""
a
├── b
│   └── h
└── c
    ├── d
    │   └── g
    └── f
""")

tree_diff = get_tree_diff(root, root_other, detail=True)
tree_diff.show()
# a
# ├── b
# │   ├── d (moved from)
# │   │   └── g (moved from)
# │   ├── e (removed)
# │   └── h (added)
# └── c
#     └── d (moved to)
#         └── g (moved to)
from bigtree import str_to_tree, get_tree_diff

root = str_to_tree("""
a
├── b
│   ├── d
│   │   └── g
│   └── e
└── c
    └── f
""")

root_other = str_to_tree("""
a
├── b
│   └── h
└── c
    ├── d
    │   └── g
    └── f
""")

tree_diff = get_tree_diff(root, root_other, detail=True, aggregate=True)
tree_diff.show()
# a
# ├── b
# │   ├── d (moved from)
# │   │   └── g
# │   ├── e (removed)
# │   └── h (added)
# └── c
#     └── d (moved to)
#         └── g
from bigtree import Node, get_tree_diff

root = Node("a")
b = Node("b", parent=root)
c = Node("c", tags="original c", parent=b)
d = Node("d", tags="original d", parent=root)
root.show(attr_list=["tags"])
# a
# ├── b
# │   └── c [tags=original c]
# └── d [tags=original d]

root_other = Node("a")
b = Node("b", parent=root_other)
c = Node("c", tags="new c", parent=b)
e = Node("e", tags="new e", parent=b)
d = Node("d", tags="new d", parent=root_other)
root_other.show(attr_list=["tags"])
# a
# ├── b
# │   ├── c [tags=new c]
# │   └── e [tags=new e]
# └── d [tags=new d]

tree_diff = get_tree_diff(root, root_other, attr_list=["tags"])
tree_diff.show(attr_list=["tags"])
# a
# ├── b
# │   ├── c (~) [tags=('original c', 'new c')]
# │   └── e (+)
# └── d (~) [tags=('original d', 'new d')]

Export Tree

Tree can be exported to other data types:

  1. Newick string notation
  2. Nested dictionary (flat structure and recursive structure)
  3. pandas DataFrame
  4. polars DataFrame
  5. Dot (can save to .dot, .png, .svg, .jpeg files)
  6. Pillow (can save to .png, .jpg)
  7. Mermaid Flowchart (can display on .md)
from bigtree import Node

root = Node("a", age=90)
b = Node("b", age=65, parent=root)
c = Node("c", age=60, parent=root)
d = Node("d", age=40, parent=b)
e = Node("e", age=35, parent=b)
root.show()
# a
# ├── b
# │   ├── d
# │   └── e
# └── c
from bigtree import tree_to_newick

tree_to_newick(root)
# '((d,e)b,c)a'

tree_to_newick(root, attr_list=["age"])
# '((d[&&NHX:age=40],e[&&NHX:age=35])b[&&NHX:age=65],c[&&NHX:age=60])a[&&NHX:age=90]'
from bigtree import tree_to_dict

tree_to_dict(
   root,
   name_key="name",
   parent_key="parent",
   attr_dict={"age": "person age"}
)
# {
#    '/a': {'name': 'a', 'parent': None, 'person age': 90},
#    '/a/b': {'name': 'b', 'parent': 'a', 'person age': 65},
#    '/a/b/d': {'name': 'd', 'parent': 'b', 'person age': 40},
#    '/a/b/e': {'name': 'e', 'parent': 'b', 'person age': 35},
#    '/a/c': {'name': 'c', 'parent': 'a', 'person age': 60}
# }
from bigtree import tree_to_nested_dict

tree_to_nested_dict(root, all_attrs=True)
# {
#    'name': 'a',
#    'age': 90,
#    'children': [
#       {
#          'name': 'b',
#          'age': 65,
#          'children': [
#             {
#                'name': 'd',
#                'age': 40
#             },
#             {
#                'name': 'e',
#                'age': 35
#             }
#          ]
#       },
#       {
#          'name': 'c',
#          'age': 60
#       }
#    ]
# }
from bigtree import tree_to_dataframe

tree_to_dataframe(
   root,
   name_col="name",
   parent_col="parent",
   path_col="path",
   attr_dict={"age": "person age"}
)
#      path name parent  person age
# 0      /a    a   None          90
# 1    /a/b    b      a          65
# 2  /a/b/d    d      b          40
# 3  /a/b/e    e      b          35
# 4    /a/c    c      a          60
from bigtree import tree_to_polars

tree_to_polars(
   root,
   name_col="name",
   parent_col="parent",
   path_col="path",
   attr_dict={"age": "person age"}
)
# shape: (5, 4)
# ┌────────┬──────┬────────┬────────────┐
# │ path   ┆ name ┆ parent ┆ person age │
# │ ---    ┆ ---  ┆ ---    ┆ ---        │
# │ str    ┆ str  ┆ str    ┆ i64        │
# ╞════════╪══════╪════════╪════════════╡
# │ /a     ┆ a    ┆ null   ┆ 90         │
# │ /a/b   ┆ b    ┆ a      ┆ 65         │
# │ /a/b/d ┆ d    ┆ b      ┆ 40         │
# │ /a/b/e ┆ e    ┆ b      ┆ 35         │
# │ /a/c   ┆ c    ┆ a      ┆ 60         │
# └────────┴──────┴────────┴────────────┘
from bigtree import tree_to_dot

graph = tree_to_dot(root, node_colour="gold")
graph.write_png("assets/demo/dot.png")
from bigtree import tree_to_pillow

pillow_image = tree_to_pillow(root)
pillow_image.save("assets/demo/pillow.png")
from bigtree import tree_to_mermaid

mermaid_md = tree_to_mermaid(root)
print(mermaid_md)
  • dot.png

Dot Image Output

  • pillow.png

Pillow Image Output

  • Mermaid flowchart
    %%{ init: { 'flowchart': { 'curve': 'basis' } } }%%
    flowchart TB
    0("a") --> 0-0("b")
    0-0 --> 0-0-0("d")
    0-0 --> 0-0-1("e")
    0("a") --> 0-1("c")
    classDef default stroke-width:1